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Abstract This work aims to: (1) correlate photochemical

activity and productivity, (2) characterize the flow pattern of

culture layers and (3) determine a range of biomass densities

for high productivity of the freshwater microalga Chlorella

spp., grown outdoors in thin-layer cascade units. Biomass

density, irradiance inside culture, pigment content and

productivity were measured in the microalgae cultures.

Chlorophyll-fluorescence quenching was monitored in situ

(using saturation-pulse method) to estimate photochemical

activities. Photobiochemical activities and growth parame-

ters were studied in cultures of biomass density between 1

and 47 g L-1. Fluorescence measurements showed that

diluted cultures (1–2 g DW L-1) experienced significant

photostress due to inhibition of electron transport in the PSII

complex. The highest photochemical activities were

achieved in cultures of 6.5–12.5 g DW L-1, which gave a

maximum daylight productivity of up to 55 g dry biomass

m-2 day-1. A midday depression of maximum PSII photo-

chemical yield (Fv/Fm) of 20–30% compared with morning

values in these cultures proved to be compatible with well-

performing cultures. Lower or higher depression of Fv/Fm

indicated low-light acclimated or photoinhibited cultures,

respectively. A hydrodynamic model of the culture

demonstrated highly turbulent flow allowing rapid light/dark

cycles (with frequency of 0.5 s-1) which possibly match the

turnover of the photosynthetic apparatus. These results are

important from a biotechnological point of view for opti-

misation of growth of outdoor microalgae mass cultures

under various climatic conditions.
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Abbreviations

Chl Chlorophyll

Car Carotenoids

DW Dry weight

F0, Fv, Fm Minimum, variable and maximum

fluorescence in dark-adapted cultures

F0, Fm
0 Actual and maximum level of fluorescence in

light-adapted cultures

Fv/Fm Maximum quantum yield of PSII

DF/Fm
0 Actual quantum yield of PSII

L/D Light/dark

NPQ Non-photochemical quenching (Fm/Fm
0 - 1)

Nr Reynolds number

PSII Photosystem II

PQ Plastoquinone

Q Quinone

Introduction

Outdoor open ponds, or raceways, represent the most fre-

quently employed technology for mass microalgae cultures
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due to their low construction cost [1]. In these cultivation

units, a culture layer of 15–30 cm is usually adopted, and

this determines an areal volume of at least 150–300 L m-2.

Such a volume requires the maintenance of a rather low

biomass density (approximately 0.5 g DW L-1), which in

turn increases the costs of harvesting and pond mainte-

nance. Another important drawback of open ponds is the

limited possibility of controlling temperature. This is par-

ticularly important for mesophilic organisms such as cya-

nobacteria with usual temperature optima of around 35�C,

a temperature reached in open ponds only in summer for a

limited period during the day. By contrast, in open thin-

layer systems, microalgal suspension is circulated over a

flat surface exposed to solar irradiance [2]. Due to the short

optical path (\10 mm), light utilisation is more efficient

and high densities of biomass (25–35 g L-1) can be

operated. These units are characterized by their high

ratio of exposed surface area to total culture volume (S/V

of *100 m-1) and highly turbulent flow, which enables

high volumetric and areal productivity compared with that

of open ponds (S/V \ 10 m-1). Thin-layer cascades are

also easily heated up by solar irradiance, but on the other

hand they are also spontaneously cooled by water evapo-

ration at higher temperatures.

Declined-surface cultivation cascades, consisting of

glass plates covered with baffles supported by a steel

structure, were designed in the 1960s by Šetlı́k et al. [2].

These were later modified to the present thin-layer system

[3, 4]. Its short light path in combination with the high cell

density and intensive turbulence enables cells to be

exposed to intermittent light with short light/dark cycles,

thus avoiding over-reduction of photosynthetic electron

carriers.

Optimal cultivation conditions and a practical photobi-

oreactor design for mass microalgal cultures have often

been determined semi-empirically through long experi-

ence, requiring numerous series of experiments. Since

the mid-1990s, a significant contribution to microalgal

biotechnology has been achieved by the introduction of

modern photobiochemical methods, mainly chlorophyll

(Chl) fluorescence. Using this method, we can monitor the

photosynthetic activity of microalgae cultures in outdoor

systems [5–8]. Chl-fluorescence monitoring has proven a

suitable technique for measuring photochemical perfor-

mance, being fast, non-invasive and easy to measure.

At present, basically two Chl-fluorescence approaches

are used to monitor photosynthetic efficiency in microalgal

mass cultures: fast fluorescence induction kinetics and the

saturation-pulse method. Although fluorescence parameters

can be measured easily, some problems may arise when

they are used to predict changes in photosynthetic perfor-

mance. Even though the theory is well described at present

[9–11], interpretation of fluorescence signals might not be

straightforward, particularly when dealing with microalgae

[12, 13]. In particular, problems associated with accurate

estimation of PSII efficiency and the roles of photochem-

ical and non-photochemical quenching as measured by

fluorescence and its relationship with the rates of linear

electron flux and CO2 assimilation have to be carefully

judged.

The principle of in situ modulated Chl-fluorescence

measurement in turbulent microalgal cultures is based on

the assumption that signal modulation is two orders of

magnitude faster than the suspension movement in a cul-

tivation unit. Some physiologically useful expressions have

been derived from saturation-pulse analysis of fluorescence

quenching, which allow deep insights into a plant’s

capacity to cope with (excess) excitation energy [10, 11,

14–16].

In microalgae biotechnology, the major goal is to

achieve higher yields and volumetric productivity. As part

of our present studies, we have focussed on the regulation

and control of cultivation systems and the diagnostics of

microalgae mass cultures from the photosynthetic point of

view. We aim to correlate the culture productivity of the

freshwater microalga Chlorella grown in outdoor thin-layer

cascade units to photochemical activities in order to study

the growth physiology of a mass culture. This information

is crucial to optimise the productivity of outdoor cultures at

different densities.

Materials and methods

Cultivation unit design

Two types of outdoor open cultivation units were used: an

experimental unit of 24 m2 with adjustable working vol-

ume (minimum 0.17 m3) and a production unit of 224 m2

with working volume of 2.2 m3. In these units, microalgal

suspension flows in a thin layer (6 mm) over a cascade of

sloping planes exposed southwards to solar irradiance [17].

The units are made up of five parts: cultivation surface,

degasser, pump, CO2 supply, and measurement and control

sensors (for a detailed description see Fig. 1).

The experimental unit consists of two sloped cultivation

lanes where the lower end of the upper lane is connected by

a trough to the beginning of the lower lane, which is

declined in the opposite direction (Fig. 1a). The suspension

flows into a retention tank (degasser), from where it is

circulated by a pump via a riser (a return pipe) to the upper

part of the cultivation area. Special software (based on

LabView, National Instruments) has been designed to

enable automatic control and data acquisition of the culture

parameters in the experimental unit. The culture’s behav-

iour was monitored by temperature, pH and dissolved

308 J Ind Microbiol Biotechnol (2011) 38:307–317

123



oxygen concentration sensors. CO2 supply was controlled

by an electronic valve according to pH. The construction of

the degasser (retention tank) enabled adjustment of the

dark volume of the culture to increase the exposed surface-

to-total volume (S/V) ratio of the unit.

The production unit area of 224 m2 (S/V = 102 m-1) is

about ten times larger than the experimental unit. It con-

sists of two symmetrical halves, each consisting of four

lanes running parallelly back and forth for 14 m (Fig. 1b).

Organism and culture conditions

The experiments were carried out with the microalga

Chlorella spp. from the culture collection of the Laboratory

of Algal Biotechnology at the Institute of Microbiology

(Třeboň, Czech Republic). Its laboratory growth optimum

is about 30�C, but it is able to grow at up to 35–37�C

without appreciable reduction of productivity. Most of the

measurements were carried out between 07:00 and 19:00 h

(GMT) on clear and sunny days with stable irradiance

through the day in June and July. The daily cultivation

period was determined by switching the circulation system

on/off. Overnight (dark period), or under unfavourable

weather conditions, the culture suspension was kept in the

retention tank and mixed by air bubbling. The cultures

were grown photoautotrophically in a mineral medium in a

fed-batch regime [4]. Nutrients were supplied twice a day

according to culture consumption. pH was maintained at

the optimal value of 7.6 ± 0.2 by automatic injection of

pure CO2, or controlled manually in the range 7.4–7.9. The

temperature ranged between 22�C and 36�C. In the

morning (08:00 h) the irradiance intensity was about

0.4 mmol photon m-2 s-1, reaching up to 2 mmol photon

m-2 s-1 at midday (13:00 h).

At the start of the experiment, the cultures were diluted

with fresh medium to the required biomass density.

The dissolved oxygen concentration of about 12 mg L-1

was measured at 08:00 h, while it peaked at 25–30 mg L-1

around midday.

Hydrodynamic characterization of suspension flow

in cascades

To analyze the fluid pattern in a cascade cultivation system

which consists of a series of flat plates, it is necessary to

consider parameters such as the film (layer) thickness s, the

speed u of the suspension flow, and the Reynolds number

Nr in various situations.

We modelled the system as a layer of fluid moving over

a plate surface in a stationary regime, choosing two main

(horizontal) directions labelled x and y, and for the sake of

clarity the third orthogonal axis z was neglected (Fig. 2).

This kind of flow clearly corresponds to the case of fluid

movement on an inclined surface of cascade units, which

can be modelled by using the following calculations. By

balancing the forces on an infinitesimally small fluid

‘packet’ in the x-axis direction, we can easily assume that

the resulting equation is (1):

Fig. 1 a Outdoor experimental unit for cultivation of microalgae

where a thin layer (*6 mm) of microalgal suspension flows along a

declined surface (24 m2) with a volume of 170–225 L and surface/

volume ratio (S/V) of 100–135 m-1. The unit consists of two declined

cultivation lanes made of glass plates supported by scaffolding. It is

made up of several parts: (1) retention tank (degasser), (2) inclined

cultivation surface, (3) circulation pump, (4) CO2 supply and a three-

way valve. The lower end of the upper lane is connected by a trough

to the beginning of the lower lane, which is inclined in the opposite

direction. The suspension flows into the retention tank (degasser),

from where it is pumped by a circulation pump via a riser (5) back to

the upper part of the cultivation area, where it is distributed by a

perforated tube. Measurement and control sensors (pH, dissolved

oxygen, temperature and liquid level) are mounted in the degasser and

in the connecting trough (6). The cycle takes about 60–80 s, which

can be varied by altering the pump velocity. The suspension can be

harvested via a three-way valve (4). The whole system is controlled

by computer software which enables regulation of the cultivation

process and data acquisition. b Production unit of 224 m2 with

working volume of 2.2 m3 and S/V ratio of 102 m-1. This unit is

about ten times larger than the experimental unit
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F1 � F2 � sw � P � lþW sin h ¼ 0; ð1Þ

where F1 and F2 represent the hydrostatic pressures that the

fluid packet exchanges with the contiguous fluid elements.

If this element is infinitesimally small, the forces acting on

it have equal intensity yet opposite direction and thus can

be neglected. The viscous forces that arise within the fluid

are represented by the fluid–wall shear stress coefficient

(indicated by sw), and calculated along the wetted

perimeter (P�l). Finally the gravitational force acting on

the fluid packet is estimated, taking into account the

tilted plane angle and the fluid element weight. After

simplifications and rearrangements of the above formula

we can represent the flux by the Manning equation (Eq. 2)

[18]:

Rh¼
A

P
¼ s �z

zþ2s

sw¼
K �q �u2

2

8
>><

>>:

!u¼R
2=3
h �S

1=2
0

n
!Q¼A �R2=3

h �S
1=2
0

n
; ð2Þ

where Rh is the hydraulic radius, A and P are the flow area

and the wetted perimeter, z is the length of the section

along the z axis (graphically omitted) and K is a propor-

tional constant to adjust the proportion between wall shear

stress and hydrodynamic pressure. S0 is the value of the

slope percentage, calculated as the ratio between the

heights reached at the initial section of the cultivation unit

and its total length. As this value is very small (0.017), we

can simplify the calculations, avoiding the use of trigono-

metric functions. The parameter n is called the Manning

resistance coefficient, and it accounts for all frictional

phenomena involved in the flow. Values for the Manning

resistance coefficient can be obtained from the literature

[18]. Equation 2 correlates the volumetric fluid flux with

the film thickness s, if acceptable values for the parameter

n are known.

With the above equations we can calculate the film

thickness directly from the value of the volumetric flow

rate and then determine the fluid speed to be used with the

Reynolds number, calculated using the relation:

Nr ¼
q � u � Rh

l
¼

q � u � z�s
zþ2s

l
: ð3Þ

In fluid mechanics, the Reynolds number Nr is a

dimensionless number that gives a measure of the ratio

of inertial forces to viscous forces and consequently

quantifies the relative importance of these two types of

forces for given flow conditions.

Analytical procedures

The dry weight (DW) of the microalgae culture was mea-

sured for triplicate 2-mL samples by drying the biomass

obtained by centrifugation of culture in pre-weighed

Eppendorf tubes. Pigment content (Chl a and b, total

carotenoids) was determined spectrophotometrically in

80% acetone [19]. The amounts of individual carotenoids

were assessed by high-performance liquid chromatography

(HPLC) using a procedure of Gilmore and Yamamoto [20]

with modified elution gradient (the methanol/n-hexane ratio

of solvent B was changed from 4:1 to 4.5:1), isocratic elu-

tion with solvent B prolonged from 4.5 to 7.5 min, and a

chromatography column thermostated at 20�C.

Chl-fluorescence measurements

A pulse-amplitude-modulation fluorometer (PAM 101-103

connected to the emitter-detector unit ED-101US, or PAM

2000, H. Walz, Effeltrich, Germany) was used for in situ

monitoring of photobiochemical activity of the Chlorella

cultures. Chl-fluorescence parameters were calculated from

the saturation-pulse quenching analysis [9]. The steady-

state fluorescence level F0 was recorded in situ in the

cultivation unit using solar irradiance as actinic light (at an

angle of about 60�), placing the fibre-optic light guide of

the fluorometer protected by a glass tube into the suspen-

sion (Fig. 3). A single, high-intensity flash ([10–15 mmol

photon m-2 s-1, 0.7 s duration) was applied to raise the

fluorescence yield to the F0m value (the maximum fluores-

cence level in the light-adapted state). The fraction of

absorbed light utilized in electron transport is given by

the actual quantum yield of PSII, UPSII ¼ F0m � F0
� �

=F0m;
which correlates with the reduction in the quantum yield of

oxygen evolution or CO2 uptake [16]. The maximum PSII

quantum yield, Fv/Fm, i.e. the ratio of a variable to the

maximum fluorescence yield, Fv/Fm = (Fm - F0)/Fm, was

determined in dark-adapted samples (10–15 min) taken

from cultivation units. The minimum fluorescence F0 was

measured using modulated light (\0.3 lmol photon

m-2 s-1) from a light-emitting diode (peak wavelength

655 nm), and then Fm was determined using a single, high-

intensity flash ([10–15 mmol photon m-2 s-1, 0.7 s

duration). Fv/Fm is a convenient measure of photochemical

Fig. 2 Schematic diagram of the flow pattern on the inclined surface

of the cascade cultivation system. The system is modelled as a layer

of fluid moving on a plane surface in a stationary regime with two

main (horizontal) directions labelled x and y, and the third orthogonal

axis z being neglected
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performance in the PSII complex and is often considered as

an index of photoinhibition [15].

Simultaneously, the polyphasic kinetics of Chl-fluores-

cence induction was monitored using a dual-modulation

fluorometer (FL-2000, Photon Systems Instruments Ltd.,

Brno, Czech Republic) during the first second of illumi-

nation of the dark-adapted culture samples (diluted to

concentration of 0.2 g biomass L-1). The so-called OJIP

test was used to evaluate photosynthetic activity [11].

Light, pH and temperature measurements

Photosynthetically active radiation (PAR) was measured as

15-s average values using either the US-SQS/B spherical

micro quantum sensor (watertight scalar irradiance;

H. Walz, Germany) or the LI-190SA quantum sensor

(cosine-corrected up to 80� angle of incidence) coupled to

the LI-250 light meter (Li-Cor, USA). A pH/Oxi340i meter

and electrodes (WTW, Germany) were used to control

temperature, pH and dissolved oxygen concentration;

otherwise these variables were recorded automatically by

sensors.

The series of experiments was repeated over several

days, and one typical experiment was taken for presenta-

tion of data in the figures. Optical density of all cultures

was measured in a 1-cm cuvette using microalgal samples

diluted to the absorbance value of 0.10–0.15.

Data statistical analysis

The analysis of biomass productivity variance was per-

formed in the cultures grown at various biomass concen-

trations, and the mean separation was done by Tukey’s test,

using one-way analysis of variance (ANOVA; Statigraph

version 5.1, Manugistis Inc.).

Results

Chlorella mass cultures form a good experimental model

for photobiochemical measurements as they contain small

globular cells of 3–6 lm diameter in a well-mixed,

homogeneous suspension. A linear relationship was found

between optical density measured at 750 nm (OD750) and

biomass concentration, chlorophyll content and cell num-

ber within a range of biomass densities from 1 to 46 g L-1,

which represented between 30–1,400 mg L-1 chlorophyll

and 4–200 mg L-1 carotenoids, respectively (Table 1;

Fig. 4). Per gram of dry matter, the Chlorella cultures

contained about 30 9 1012 cells, *28 mg chlorophyll

a ? b and *4 mg total carotenoids. At the maximum

daily irradiance, the biomass of the highly productive

Chlorella culture (w/w in dry biomass) contained 3–3.5%

Fig. 3 In situ monitoring of Chl-fluorescence quenching using a

fibre-optic guide and a pulse-amplitude-modulation fluorometer

(PAM 101-103, H. Walz) connected to a recorder in the outdoor

cascade units. The fibre-optics (angle to the sun being about 60�) was

protected within a glass test tube and submerged about 3 mm into the

microalgal suspension. Dark-adapted samples were measured in a

stirred, temperature-controlled cuvette of the emitter-detector unit

ED-101US (H. Walz, Germany) coupled to the fluorometer

Table 1 Diel changes of

chlorophyll, carotenoids and

zeaxanthin content and the Car/

Chl ratio in Chlorella cultures

grown in outdoor cascade units

at various biomass densities

Time

[hh:mm]

Biomass

concentration

[g L-1]

Carotenoids

[mg L-1]

Chlorophyll

a ? b [mg L-1]

Car/Chl

ratio

Zeaxanthin

[% of total

carotenoids]

08:00 1.2 6 39 0.16 0.1

10:00 1.8 11 51 0.21 2.8

13:00 2.5 15 62 0.25 3.0

18:00 3.9 19 90 0.21 0.4

07:30 2.3 12 81 0.15 0.1

13:00 4.7 25 121 0.21 0.8

18:00 6.7 34 201 0.17 0.4

07:30 6.0 24 161 0.15 –

13:00 9.1 43 252 0.17 0.4

18:00 12.4 57 355 0.16 –
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total chlorophyll and 0.4–0.5% total carotenoids. The

HPLC analysis showed that the Chlorella biomass con-

tained mostly lutein (64%), violaxanthin (10%), neoxan-

thin (9%), b-carotene (10%) and some other carotenoids.

The carotenoid-to-chlorophyll ratio usually increased at

midday in cultures grown at concentration below 6 g L-1.

Only in diluted cultures, grown at high irradiance, were

noticeable amounts of the xanthophyll-cycle pigment,

zeaxanthin, detected (Table 1).

Flow pattern in a cascade cultivation system

The calculated values, compared with those measured

in situ, showed that the fluid flow in cascades is well rep-

resented by the model of a free-surface open channel

(Table 2).

The value of the Reynolds number Nr was about 4,500,

while the value characteristic for laminar flow in open

channels is only about 500. As a result, the Nr value in our

thin-layer cascades was about one-half of that recorded for

a fully turbulent flow (Nr [ 12,500). Nevertheless, the

cascade is characterized by a substantially uniform speed

profile which can be easily disturbed by inhomogeneities of

the flow surface (i.e. roughness of the bottom and side

walls and random asperities such as connections between

plates). Such an effect is beneficial by increasing the

interface for light dilution and liquid–gas exchange surface.

Fluid flow perturbations on the surface are responsible for

the creation of small localized non-laminar fluid patterns

which induce intermittent illumination of cells. As moving

waves, they can create thickening of the microalgal culture,

which contributes to this effect. These superficial waves

have to be investigated to provide an approximate value for

the duration of average light/dark (L/D) cycles.

The speed c of each wave can be calculated with the

following formula and can be directly used to calculate the

Froude number Nf:

c ¼ ffiffiffiffiffiffiffiffi
g � sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81 � 0:006
p

¼ 0:243 m/s

Nf ¼
u

ðg � sÞ1=2
¼ 0:5

ð9:81 � 0:006Þ1=2
¼ 2:06:

ð4Þ

The calculated values describe the speed of the wave

as approximately one-half of that of the fluid, which

means non-stationary waves in a supercritical fluid flux.

Due to fluid film continuity, and to the relative wave

speed, the culture moves from a shaded region to a well-

illuminated region with a frequency that is easily derived

from the ratio of the total L/D changes over the length

covered. For a flow speed on the control section of

0.5 m s–1, the theoretical calculations predict a total

wavenumber of 2.1 (0.5/0.243), which results in a L/D

cycle frequency of 0.476 s-1.

Experimental observations confirmed this calculation,

even if a number of unpredicted waves appeared in the

proximity of side-wall junctions and plate connections;

however, these merely contribute towards increasing the

intermittent L/D pattern due to the loss of local laminarity

in the transitional fluid behaviour. Moreover, visual

observations also confirmed the formation of waves on the

lateral walls and at the connections between the bottom

glass plates (placed 2-m apart) which act as static mixers,

causing rotation of the liquid.
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Fig. 4 The relationship between optical density and biomass con-

centration (triangles), chlorophyll content (circles) and cell number

(squares) measured in Chlorella cultures of various biomass densities.

All points represent a mean of three measurements. The relationship

between optical density and the three variables was linear according

to regression equations: y = 1.0287 9 x (R2 = 0.997) for biomass

concentration; y = 28.9 9 x (R2 = 0.997) for chlorophyll content;

y = 0.0304 9 1012 9 x (R2 = 0.990) for cell number. These are

represented by the common parametric function y = K 9

1.0071 9 OD (SD from the average is also included). The corre-

sponding K values are: K = 1.0287 g L-1 for biomass,

K = 28.9 mg L-1 for chlorophyll content and K = 0.0302 9 1012

cells L-1 for cell count. Per gram of dry weight, the Chlorella
cultures contain *30 9 1012 cells and *28 mg chlorophyll

a ? b. The conversion coefficient between optical density (OD750)

and dry weight is about 1.03

Table 2 Provisional calculations carried out to predict the behaviour

of the fluid flow prior to the first installation

Parameter Designed Calculated Measured

Q [m3 s-1] 0.0027

S0 0.017

Z [m] 1

N (glass sheets) 0.01

S [m] 0.0062 0.0060

U [m s-1] 0.44 0.50

Nr 4485 4940

The parameters and variables are designated as follows: Q—culture

flow rate (m3 s-1), S0—slope of photobioreactor surface (dimen-

sionless), Z—width of photobioreactor lane (m), N—Manning factor

(dimensionless), S—thickness of culture layer (m), U—free-surface

flow (m s-1), Nr—Reynolds number (dimensionless)
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Diel courses of temperature and irradiance

The temperature changes measured in the microalgal mass

cultures during the day showed that, in summer on warm

and clear sunny days, the morning values were usually

between 15�C and 20�C and then quickly increased in this

thin-layer system due to the high absorbance of solar

radiation by the relatively dense culture (Fig. 5a). How-

ever, the diel course of the culture temperature was similar

to the irradiance increase. Sub-optimum temperatures

might be limiting for growth in the morning, while a supra-

optimum temperature and high ambient irradiance (with

the maximum close to 2 mmol photon m-2 s-1) might

cause a midday depression of photosynthesis (Fig. 6). In

contrast, in the afternoon, the drop in light intensity occurs

at a faster rate than that of temperature, which can be

beneficial for growth at moderate irradiance. In general, the

maximum temperature of microalgae cultures did not get

over 36�C at midday (13:00 h), since the system is self-

cooled efficiently by the extensive evaporation.

As an example, measurements of irradiance intensity are

shown in a culture with biomass concentration of about

11 g L-1 that had high productivity; this supposed that

sunlight in this culture was being used highly efficiently.

The diel course of irradiance was measured by using a

spherical light sensor (all-direction integrated irradiance) at

the layer surface and bottom (Fig. 5b). As the diameter of

this sensor is 3 mm and the culture depth was about 6 mm,

we could measure the surface and bottom half of the layer.

In a highly productive culture, as in this case, the average

diel irradiance close to the surface was about 0.4 mmol

photon m-2 s-1, while at the bottom it was about

0.15 mmol photon m-2 s-1. This demonstrates that, in the

most productive cultures, the cells remained at saturating
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and [40 g L-1) in outdoor thin-layer cascade units
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irradiance (between 10% and 20% of maximum ambient

irradiance [21]) for most of the day, except for a few hours

during the morning and afternoon. Maxima of about 0.65

and 0.25 mmol photon m-2 s-1 were measured at midday

in the surface and bottom layers of this (11 g DW L-1)

microalgae culture, respectively.

Diel courses of photobiochemical activity:

chlorophyll-fluorescence parameters

To correlate photobiochemical activities with pigment

composition and maximum productivities, diel trends of

chlorophyll fluorescence were monitored in Chlorella

cultures of various biomass concentrations. One of the

primary aims of these measurements was to find suitable

monitoring parameters calculated from fluorescence

quenching analysis to follow the status of the photosyn-

thetic apparatus and its correlation to biomass productivity.

In a healthy culture of Chlorella, the morning value of

Fv/Fm was above 0.7. If this morning value (taken under

low irradiance at 07:00–08:00 h) was below 0.60, then

photobiochemical activity was significantly decreased, the

culture was not in good shape, and its growth was unsat-

isfactory. Diel trends of Fv/Fm showed that diluted cultures

with biomass concentration of 1.2–4 g L-1 were photoin-

hibited, as evidenced by a dramatic (48%) decrease at

midday when compared with the morning values. How-

ever, the cultures recovered more than 90% of their initial

activity in the afternoon (Fig. 6a). In contrast, at high

biomass concentrations ([40 g L-1), the midday depres-

sion of Fv/Fm did not exceed 13%, which illustrates how

little the high midday irradiance influences these thick

cultures. In the cultures with medium biomass concentra-

tions (2.5–6.5, 6.5–13.5 and 13.5–18 g L-1), the midday

decrease of Fv/Fm ranged from 19% to 26%, and the cul-

tures had also fully recovered by 18:00 h.

The diel courses of DF/Fm
0 (actual quantum PSII yield

in the light-adapted state) at various biomass concentra-

tions showed even more differentiated trends (Fig. 6b) than

those of Fv/Fm. In the thick cultures with biomass con-

centrations over 40 g L-1, DF/Fm
0 dropped by just 12%. In

the cultures with medium biomass concentration the mid-

day value of DF/Fm
0 decreased by 20–23%, and the cul-

tures almost fully recovered by 18:00 h. The most diluted

culture (biomass concentration 1.2–4 g L-1) suffered sig-

nificantly from photoinhibitory stress (seen as fluorescence

quenching), since even the morning DF/Fm
0 value was only

0.42, which is 30–40% less than in the denser cultures, and

it decreased further during the morning hours. However,

this low-biomass culture was also able to recover just as

with the thicker cultures, reaching a DF/Fm
0 value of 0.58

by 18:00 h (Table 1, Fig. 6b). The course of non-photo-

chemical quenching NPQ in the cultures was inversely

related to the changes of DF/Fm
0 (Fig. 6b, c). Interestingly,

the most significant increase in NPQ was found in the two

most diluted cultures at 10:00 h, after which the values of

NPQ decreased as the cultures grew and became accli-

mated to high irradiance. The peak in NPQ was delayed

with increasing concentration of the culture and almost

coincided with the peak of light in dense culture (40 g

DW L-1).

Fluorescence induction curves of Chlorella samples

were recorded from two cultures of different biomass

concentration at midday to illustrate the inhibition of

electron transport processes at the molecular level (Fig. 7).

The increased J peak of the fluorescence induction kinetics

in the Chlorella cultures at low biomass concentration

(2.3 g L-1) as compared with higher biomass concentra-

tion (6.5 g L-1) indicated over-reduction of the photo-

synthetic chain, which means that electron transport would

be slowed down at the acceptor side of the PSII complex

(QA ? PQ pool). The presence of zeaxanthin, which par-

ticipates in energy dissipation, and the high Car/Chl ratio,

indicated that diluted cultures suffer from high-irradiance

stress (Table 1).

Gross (daylight) productivity of the cultures was sig-

nificantly influenced by the biomass concentrations at

which they were grown (Fig. 8). Productivity increased as

the biomass concentration increased until the optimal

concentration was reached (6.5–13.5 g L-1). At this con-

centration the yield reached as much as 55 g m-2 day-1

(P = 0.01). Further increase in the biomass concentration

caused a reduction in productivity as a result of excessive

light limitation of the cultures. Comparison of these pro-

ductivities with the diel courses of photobiochemical
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activity (both Fv/Fm and DF/Fm
0) indicated that lower

productivity in the dense cultures is most probably related

to light limitation, while in the diluted cultures productivity

is suppressed by photoinhibition.

The productivity of the thin-layer microalgal cultures

was also strongly influenced by the surface/volume ratio

(S/V). This could be documented by comparing the growth

of the Chlorella cultures in the experimental and production

units, which differed significantly in S/V ratio. A 17-day

experiment showed that growth of Chlorella was much

faster in the experimental unit with S/V ratio of 133 m-1

than in the production unit with S/V ratio of 102 m-1,

despite the same starting biomass concentration (Fig. 9).

The mean net productivity of both cultivation units was

calculated from five cultivation cycles. We found values

of 18.7 ± 5.14 and 14.3 ± 4.11 g dry biomass m-2 day-1

for the experimental and production units, respectively

(Table 3). Thus, the experimental unit with higher S/V ratio

was more productive by about 30% on average during a

4-month cultivation period from June to September 2007 in

comparison with the production at lower S/V ratio.

Discussion

Maximizing light conversion efficiency in outdoor cultures

is one of the key factors for improving the economy of the

process. In principle, to reach the highest efficiency of

biomass production in a microalgal culture, it is necessary

to expose each single microalgal cell to a light intensity

just up until the point at which the photosynthesis rate

versus light intensity starts to flatten out (0.2–0.4 mmol

photon m-2 s-1). This goal is difficult to reach in thick

mass cultures because of the self-shading effect of cells. It

depends on the culture depth, biomass concentration and

mixing rate parameters, all of which are determined by the

type of photobioreactor. In the outdoor thin-layer cascade

units used in our experiments, microalgae cells can

encounter three ranges of intermittent illumination (L/D

cycles): (1) high-frequency fluctuations lasting hundreds of

milliseconds, which are related to the movement of cells on

the illuminated surface, (2) medium-frequency fluctuations

of seconds to minutes, mostly related to the alternation

between light exposure of the cells on the flat planes and

their ‘dark’ stay in the pumps, tubing and retention tanks

and (3) low-frequency cycles of hours to days given by

clear/cloudy sky shifts and day/night cycles [22, 23].

The high-frequency light fluctuations caused by turbu-

lent movement of cells during the light exposure phase is

most desirable. On the one hand, it prevents over-saturation

of photosynthesis in surface-exposed cells, and on the

other, consumption of energy via respiration in cells

located in deeper layers exposed to weak light or complete

darkness [26]. In our cascade units, a thin layer of micro-

algal culture supported by sufficient turbulence represents a

suitable system for achieving such a high frequency of

intermittent L/D illumination. Wave formations in the

culture increase its optical cross-section, favouring dilution

of light and thus an increase in the efficiency of light

transformation. On the whole, these factors accounted for

the relatively high efficiency of light transformation
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Table 3 Biomass productivity of experimental (24 m2, S/V ratio =

133 m-1) and production (224 m2, S/V = 102 m-1) units calculated

as a mean value for 17-day cultivation cycles in the period from June

to September 2007

Productivity

[g DW m-2 day-1]

Production unit,

S/V = 102 m-1
Experimental unit,

S/V = 133 m-1

Net (24-h) 14.3 (±4.11) 18.7 (±5.14)

Gross (daylight) 38.4 (±4.77) 52.1 (±4.08)

Standard deviation (SD) is given in parenthesis
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reached in the cascades, which was about 10% (estimated

based on visible light and daylight productivity), much

higher than that usually achieved in open ponds, i.e. about

3% efficiency based on visible light, and assuming a bio-

mass yield of 15 g m-2 day-1.

Despite the presence of high-frequency intermittent

illumination on the planar surfaces of the cascades, a pho-

tostress-related decrease in photosynthetic performance

could not be completely avoided and was especially appar-

ent in cultures with low biomass concentration (1–4 g L-1).

This phenomenon, commonly referred to as ‘photoinhibi-

tion’ of photosynthesis, could be illustrated by the light-

induced depression in the maximum and actual quantum

yield of PSII photochemistry, measured as Fv/Fm and

DF/Fm
0 (Fig. 6a, b), respectively, and by the strong increase

in the J-phase of the chlorophyll-fluorescence transient

(Fig. 7). This increase is assumed to reflect the inactivation

of PSII reaction centres, which is related to over-reduction of

quinone electron acceptors (Fig. 7) [11]. In the optimum-

density (6.5–18 g biomass L-1) cultures, the highest pro-

ductivity was correlated with a 25% decrease in the midday

maximal PSII photochemical yield (Fv/Fm or DF/Fm
0) in the

dense cultures this decrease was about 10%, which supports

the theory that these cultures are shade-adapted and grow at

sub-saturating irradiance [8, 21].

Interestingly, in the diluted cultures, the peak of NPQ in

particular was reached well before the peak of light

intensity (Fig. 6c), demonstrating a necessity to dissipate

light in the morning hours when the irradiance was rising

steeply and the culture temperature was still sub-optimal

[28]. In diluted cultures, the depression in fluorescence

parameters was also accompanied, particularly at midday,

by the appearance of zeaxanthin (Table 1), an indicator of

dissipation of excess light via non-photochemical quench-

ing. In our experiments, the xanthophyll cycle was found to

be functional in various green microalgae; however, the

content of zeaxanthin normalised to chlorophyll was sig-

nificantly lower than that reported from higher plants, and

its contribution to non-photochemical quenching is not as

significant as in higher plants, or it can vary among mic-

roalgal species [8].

The positive effect of fast light/dark cycles in hundreds

of milliseconds seems to be related to the similar rate of

turnover of the photosynthetic apparatus. By contrast, the

effect of medium-frequency fluctuations on light transfor-

mation efficiency [22, 24, 25] is mostly given by the

S/V ratio of the photobioreactor. Comparison of the same

type of thin-layer cascades with different S/V ratios dem-

onstrates the importance of this parameter for culture

productivity. As expected, higher biomass density at the

end of experiment was reached in the experimental unit

with the higher S/V ratio compared with that of the pro-

duction unit (Fig. 9). However, this difference would have

only a relative benefit (e.g. by reducing the cost of har-

vesting), if it were not accompanied by higher biomass

productivity (expressed in g m-2 day-1; Table 3). Indeed,

over 17 days of cultivation the mean values for produc-

tivity were also higher for the experimental unit by about

30%. Such a difference can become significant during

large-scale cultivations, and therefore these results point to

the importance of maximally reducing the culture volume

in the dark part of the photobioreactor, in which cells

consume biomass (carbohydrates) by respiration [27].

In conclusion, we can point out some strengths of the

thin-layer cascade system for mass culture as compared

with open ponds and raceways, as well as some general

findings valid for other cultivation units. The thin-layer

cascades are beneficial due to the increased interface for

light dilution and liquid–gas exchange:

1. High ratio of exposed surface to total volume

(S/V) guarantees high biomass productivity of cascade

units, which can be operated up to high biomass

density (up to 45 g L-1).

2. A hydrodynamic model of the culture demonstrated its

highly turbulent flow that allows rapid light/dark

cycles (with frequency of about 0.5 s-1), which match

the turnover of the photosynthetic apparatus.

3. The decline in the Fv/Fm value of about 25% at midday

represents a useful indicator of highly productive

cultures.

Thin-layer cascades bring together some advantages of

both open and closed cultivation systems. One can consider

these units as a low-cost system that shows promise for such

purposes as ample biomass production for biofuel [29].
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